Fund-A-Need Thank you! - 7th Grade

Last year the Fund-A-Need raised money to get 75" smart boards in the K-8 classrooms. Today we finally got them installed!!! In the Mechatronics room we were using the smart boards 20 minutes after they were installed for a lesson in Autodesk Fusion 360. Today students work with symmetry and patterning tools as well as applying textures to their designs. It was very powerful for students to be able to share their work in real time with the rest of the class. 

Above: A 7th grade student shares a rendering on the big screen (left). Thank you to MYMC Inc. for pushing the install process so fast so we could use the screens immediately (right).

Above: A 7th grade student shares a rendering on the big screen (left). Thank you to MYMC Inc. for pushing the install process so fast so we could use the screens immediately (right).

Stunning Glass Sculptures - 5th Grade

Today our 5th grade students built on the work of our 4th graders in Fusion360. After looking at (x,y) vs (x,y,z) we took the basic metal donut shapes the 4th graders created and added materials and textures. The rendering process uses a technique called ray tracing where we calculate the path of each photon, including how it would reflect and refract in glass and metal. At first glance the image below might just look like a photo of a glass sculpture in a galley. The reality is this is a virtual model one of our 5th graders constructed in Mechatronics class today. This 3D model can then be animated further in the virtual world or become part of our physical world depending on the tools applied to it by the student. A few other 5th grade class examples here, here and here.


Above: A digital glass sculture examample from the St. Raymond 5th grade class.

Above: A digital glass sculture examample from the St. Raymond 5th grade class.

Metal Donuts - 4th Grade

Autodesk Fusion 360 is a professional engineering design tool students in high school and college start to pick up. Today we gave it to our 4th graders. We looked at how a profile (any enclosed two dimensional area) can be revolved around a line into something resembling a donut (torus). We then arranged copies of those donut shapes into an intersecting circular pattern. The result is below:


Modifying an Existing Design

There is a huge leap in complexity between simply making a machine that will exist on its own and making a part to work inside an existing machine. At St. Raymond our Mechatronics classes are decidedly "non-robot" and "non-car". We want students of all interests to pick up Mechatronics as a skill, so our classroom projects don't look like the stereotypical robots and cars of other programs. We design and build things like microprocessor controlled water drinking bugs and wooden speakers

Our after-school Makerspace is very different. Students can walk in with any interest and simply build what is in their mind's eye. Projects are anywhere from a few hours long to 30 hours long (like in this case). We had a student who is totally into Radio Control race cars and wanted to design a part to improve on the design suspension of a factory product. This meant 1) Understanding the Geometry involved in the suspension system, 2) Identifying the current and modified performance characteristics they want to see and 3) Design and building a part with very, very tight tolerances to meet the stated goals for performance characteristics.

The student that embarked on this project is 9 years old. The student spent every available hour in the after school Makerspace at St. Raymond learning Tinkercad and how to set up, use and maintain the Dremel Idea Builder 3D printer. Thirty+ hours, and a many iterations later, the student installed a successful prototype part into the suspension system that is more than 20% lighter and modifies the car's suspension geometry to the desired 1.4° of camber angle. The part had to fit with the other parts from the factory perfectly. It did. We don't have a camera lens big enough to capture the sense of pride-in-craft that the student showed while driving the car around those initial laps with their newly minted parts successfully installed and an engineering problem solved!

Training Neural Nets - 5th Grade

Part of the challenge of developing the Mechatronics program at St. Raymond is looking into the future and predicting the types of technology tools that will become mainstream as students finish high school and enter college. One of the technologies we looked at last week with the 5th grade class has to do with using training Neural Nets to produce art. Neural nets are programs that learn on their own as they are exposed to different inputs. This is very similar to the developing human mind where patterns of synapses are trained (strengthened) with each new experience. The trainers of the Neural Nets do not program with code in the traditional sense, but simply provide direction like "compare these three songs and then write a new song based on the similarities of the three" or "use this image of a human and include the face in a painting with the style of Van Gough". Researchers are now looking at developments where we can ask a Neural Net to explore the similarities in certain existing medicines and to compose a new molecule to fight an as yet undefeatable disease. 

This technology is very new, and it is hard to predict how it will be used in the future. The tools that will allow students to explore this type of technology are just coming online, and we are excited at St. Raymond that the new 6th grade class next year will be able to do some hands-on exploration with the technology and be among the first elementary school students in the country to look seriously at how it can be used to improve quality of life as they mature along side of it.

One of the 5th grade students leaps into Van Gough's starry night with the help of a Neural Net

One of the 5th grade students leaps into Van Gough's starry night with the help of a Neural Net

Wary of Wireless and WiFi

Wary: adjective, warier, wariest. 1. watchful; being on one's guard against danger.

Our students are growing up with cell phones. Most of the graduating class at St. Raymond has their own cell phone. As a society we are doing a better job in school teaching common sense online safety, but most schools universally skip a step: that link from the phone to getting online. There is a wireless link from the phone to the internet. Phones commonly connect to WiFi spots at school and home to get online. This is a radio frequency link. Today Tony Gambacorta, a White Hat hacker (someone who is employed by companies and governments to test digital security), from walked the students through using a $20 usb device that scans radio frequencies. 

We learned that there are so many devices around us from doorbells to our key fobs that use wireless technology to function. The class wired up transmitters to ring a wireless doorbell from a distance and observed the data a key fob sends to a car. You can see the software interface in the upper left corner of the image below. The more important part of the lesson is getting students to realize that just by having their cell phones powered-on data about that device, what websites it is logged into, and other wireless networks it has connected to in the past (ie. your home network name) is available to anyone with a WiFi scanner. When you combine this with a public map of WiFi networks someone with ill-intent can work out where that person lives. 

The goal today is to get our students (and parents) to think more about the kind of world we live in. A world of ubiquitous data includes data about us. The image in the lower right below is a screen shot of this website. Parents are encouraged to navigate there from a cell phone and see what kind of information is available to any website you or your student visits and follow the free security suggestions. Should we be scared of new technology? No. Wary? Yes.

Upper Left: GQRX Scanning Software that 8th graders used today. Lower Right: See what any website sees when you visit it.

Upper Left: GQRX Scanning Software that 8th graders used today. Lower Right: See what any website sees when you visit it.

Parents: That Turtle is Back!

If you are a parent now and ever took computer programming as a student you probably coded in a bit of BASIC and made a "Turtle" draw lines on the screen with commands of forward, left, right and backward. If you never took a computer language class, the concept is to just write a bunch of instructions in sequences to draw shapes on a screen. Building from this you can start to use tools in programming like loops and conditionals. Today the 4th grade class got a dose of the "Turtle". They were the first classroom in the country to test out a learning tool for Java script called

For those adults who might be thinking "this is exactly the same as the "turtle" game we learned to code in" - yes, absolutely, it is. There are tons of free tools out there like this. The unique feature here is the brilliant progression of coding exercises. The creator of the game, Keshav Saharia, visited our school today and previewed the game with us. Initially this tool was aimed at students in jr. high, but St. Raymond 4th graders crushed it!

A screen shot from the game developed by Keshav Saharia

A screen shot from the game developed by Keshav Saharia

Building a "Won't Budge" Motor

4th grade is studying electric motors. To break down the concept to first principles we start with an electromagnet: a coil of wire wound around a metal cylinder. As electricity flows through the coil a magnetic field develops around the metal core. We can attract or repel any other metal that contains iron by controlling the amount of electric current in the coil. Most people think about motors as something that makes a shaft or an axle turn, but motors quite often need to stop and hold in a certain position. Examples of those motors are servos and stepper motors and we build machines around those in 7th grade. Think about this project as a single step stepper motor: It only holds position when it is on and lets a weight drop when power turns off. 

We took our strongest 4th grader and had him apply full force to pull the metal plate with the handle on the bottom away from the silver electromagnetic coil attached to the wooden dowel on top. The student was able to break the magnet's 24volts/3amp grip by applying more than 72 watts of downward pressure to the handle

A 4th grade student pulls with 72 watts of downfoce to break the "won't budge" motor.

A 4th grade student pulls with 72 watts of downfoce to break the "won't budge" motor.

Making a Makerspace: The St. Raymond Journey

St. Raymond is preparing to host both principals and teachers from all over the San Francisco Archdiocese on Monday, May 22. We will open up our doors to share what we have done so far to build out our Makerspace program over the last three years, relating both what has worked well, and what has not worked well in our journey. Most importantly, we will host a roundtable discussion on Catholic school values and how that relates to Design Thinking and Makerspace programs. We will also examine what it means to change school culture when it comes to Maker integration in math, science and art lessons.

Autodesk came to visit our 4th and 8th grade classes last month to observe how we transition from Tinkercad (used in education around the world) in the lower elementary grades to Fusion360 (a professional engineering package) in 8th grade. Below are three short videos highlighting our Maker program that Autodesk produced from that visit and we are proud to share them with you! Also note the Dremel 3D printer and hand tools students use in Maker projects.
@AutodeskEDU, @Fusion360 and @Tinkercad @DremelEDU

The first video is from the student perspective:

The second video is from the perspective of the educator (the Maker Awaker):

Tinkercad and Fusion360 helps students to go from ideas to physical parts on the Dremel 3D printer. A slightly longer version of the video is here.

The third video is about how we have used a Makercart to serve different classrooms:

1st Grade Revolutions

When we move from 2D Shapes to 3D shapes we "extrude a profile". This means that we take a 2D image and pull it into a 3D volumetric shape. A real world example of an extrusion machine are Playdough sets we grew up with where the clay was pushed though a hole to extrude a particular shape. This most often was extruding a cylinder from a circular hole. 

Another type of extrusion is the revolve. Think about the cross-section of a bicycle tire which is mostly circular, but it is extruded in a torus (donut) shape around an axis (axle). The image below shows the transition in 1st grade yesterday from hand drawn 2D profiles to 3D revolutions of those shapes. 

Student drawn 2D profiles revolved into 3D shapes

Student drawn 2D profiles revolved into 3D shapes

6th Grade Lesson Improvement

Students at St. Raymond often end up simplifying or improving the lesson being offered by the teacher. Below (in the red circle) are two circuit boards connected together as configured by Mr. Hawthorn. The instructions to the students were to connect pins #8-11 on the Arduino to #in1-in4 on the L294 motor amp board. I assumed the students would use the provided wires. Nope! 

Students simply inverted the boards and plugged them in directly (blue circle). Adults don't always have the best, or simplest, solution to a problem.

Geometry with Mechatronics Design Tools

The 8th grade geometry class is exploring using Fusion360 as a tool to build homemade volumetric problems. The class did very well attacking the first example of this problem type with the example below. The next step will be to explore surface area an Ellipsoid early next week by actually building the underlying profile (sketch) and revolving it. We want our students to feel confident picking up math formulas they have never used before and applying them to unfamiliar problems. The if-formulas-are-vehicles analogy is to teach a person to drive a car in an empty parking lot, then give them a semi-truck and tell them to drive it cross-county. That is difficult, a little dangerous, and requires a healthy mix of grit and confidence. Same approach with Geometry. 

Conical Holes in Spherical Volumes - 1st Grade

Yesterday our 1st graders completed their second digital geometry construction challenge. After exploring cones, spheres and rectangular prisms in math class we explored what would happen if we could subtract one shape from another. In this lesson the class went from cone as a noun to conical as a adjective. The challenge was to draw a spherical shape in Tinkercad and then subtract a conical hole. The image below is a collage of the class effort.

The 1st grade class produced the digital models (above) of Conical Holes in Spherical Volumes

The 1st grade class produced the digital models (above) of Conical Holes in Spherical Volumes

Afterschool Spray Paint (Makerspace / 4th - 8th Grade)

Spray paint is not always a bad thing at school. In the context of the St. Raymond after-school Makerspace, it is another useful tool students learn to use in the pursuit of their individual design projects. Last week a student proposed using spray paint to decorate his 3D printed parts. The student was prepared with research on a special paint made by Krylon that bonds well to plastic surfaces. Most (affordable) 3D printers are single color PLA printers. We use a couple of kinds of these printers at the school, including the Dremel Idea Builder. One way to make two color models is to print out separate parts in different colors and then assemble those parts into one model. This is a good idea when you have parts with moving joints with complex geometry, or where tolerances are tight. The second, faster method is to simply print out one large part and use masking tape to block of areas for spray painting. This technique is preferable when the single part strength or simplicity is desired.

The first products combining these techniques look promising. The student leading this effort will continue to develop the technique and publish results on this blog later this year.

Spray paint on campus is not always a bad thing. A student shows off spray painted 3D printed parts.

Spray paint on campus is not always a bad thing. A student shows off spray painted 3D printed parts.

Student Managed Tools in After-school Makerspace

As our after-school Makerspace expands, students are given full responsibility over the management of tools, we have students who manage soldering stations, spray painting, CAD training, power tools and hand tools. At this point in the year, when a new student comes to the Makerspace, the teacher can simply point that person to other students with experience who will train them in the safe and correct application of each tool.

Yesterday we received a Dremel Idea Builder 3D printer. Two of our 4th graders who have shown great interest in chassis prototying were chosen to manage the new 3D Printer. The students were told that the responsibility to manage the printer belongs to them alone. While there was a teacher in the room, there was no adult help setting up and calibrating the printer, nor would there be help using the printer. These students now own the threefold responsibility to use, maintain and teach other students how to use the new tool. The results so far have been successful. They have produced high quality 3D prints from Tinkercad with students learning to care for the tools they use as well as how to use them.

Tools in the After-school Makerspace are 100% student managed

Tools in the After-school Makerspace are 100% student managed

Autodesk Visits St. Raymond

Yesterday Autodesk visited St. Raymond in order to document the 4th and 8th grade Mechatronics classes and our after-school MakerSpace. The crew at Autodesk was interested in our program because we are currently the only elementary school in the country starting students in 4th grade on Tinkercad (a digital design tool made for education) and transitioning them to Fusion 360 (a professional engineering design platform) by the end of 8th grade. Our students shined in the spotlight. The documentary crew was impressed with how our Catholic school students are motivated to design things that help people and make the world a better place.

Look for the videos to be posted in late May to

Above: the 4th grade class is filmed using Tinkercad to study degrees in a circle

Above: the 4th grade class is filmed using Tinkercad to study degrees in a circle

Using Engineering Tools to Make Art - 8th Grade

Often the best way to introduce a new tool to students is to show them how it works, but don't show them examples of what to make with it. The 3 Minute Rose is a project that evolved from showing 8th graders a few features in Fusion 360 and letting them run with it. Fusion 360 is more often used to design machines then flowers, but maybe that is because adults artificially frame what can be done with a particular tool. Leave it to students to go from STEM education to STEAM education, adding an "A" for Art along the way!